Ethanol-regulated genes that contribute to ethanol sensitivity and rapid tolerance in Drosophila.

نویسندگان

  • Eric C Kong
  • Lorien Allouche
  • Paul A Chapot
  • Karen Vranizan
  • Monica S Moore
  • Ulrike Heberlein
  • Fred W Wolf
چکیده

BACKGROUND Increased ethanol intake, a major predictor for the development of alcohol use disorders, is facilitated by the development of tolerance to both the aversive and pleasurable effects of the drug. The molecular mechanisms underlying ethanol tolerance development are complex and are not yet well understood. METHODS To identify genetic mechanisms that contribute to ethanol tolerance, we examined the time course of gene expression changes elicited by a single sedating dose of ethanol in Drosophila, and completed a behavioral survey of strains harboring mutations in ethanol-regulated genes. RESULTS Enrichment for genes in metabolism, nucleic acid binding, olfaction, regulation of signal transduction, and stress suggests that these biological processes are coordinately affected by ethanol exposure. We also detected a coordinate up-regulation of genes in the Toll and Imd innate immunity signal transduction pathways. A multi-study comparison revealed a small set of genes showing similar regulation, including increased expression of 3 genes for serine biosynthesis. A survey of Drosophila strains harboring mutations in ethanol-regulated genes for ethanol sensitivity and tolerance phenotypes revealed roles for serine biosynthesis, olfaction, transcriptional regulation, immunity, and metabolism. Flies harboring deletions of the genes encoding the olfactory co-receptor Or83b or the sirtuin Sir2 showed marked changes in the development of ethanol tolerance. CONCLUSIONS Our findings implicate novel roles for these genes in regulating ethanol behavioral responses.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

An inexpensive, scalable behavioral assay for measuring ethanol sedation sensitivity and rapid tolerance in Drosophila.

Alcohol use disorder (AUD) is a serious health challenge. Despite a large hereditary component to AUD, few genes have been unambiguously implicated in their etiology. The fruit fly, Drosophila melanogaster, is a powerful model for exploring molecular-genetic mechanisms underlying alcohol-related behaviors and therefore holds great promise for identifying and understanding the function of genes ...

متن کامل

The slowpoke gene is necessary for rapid ethanol tolerance in Drosophila.

BACKGROUND Ethanol is one of the most commonly used drugs in the world. We are interested in the compensatory mechanisms used by the nervous system to counter the effects of ethanol intoxication. Recently, the slowpoke BK-type calcium-activated potassium channel gene has been shown to be involved in ethanol sensitivity in Caenorhabditis elegans and in rapid tolerance to the anesthetic benzyl al...

متن کامل

Membrane lipid physiology and toxin catabolism underlie ethanol and acetic acid tolerance in Drosophila melanogaster.

Drosophila melanogaster has evolved the ability to tolerate and utilize high levels of ethanol and acetic acid encountered in its rotting-fruit niche. Investigation of this phenomenon has focused on ethanol catabolism, particularly by the enzyme alcohol dehydrogenase. Here we report that survival under ethanol and acetic acid stress in D. melanogaster from high- and low-latitude populations is ...

متن کامل

Ethanol tolerance caused by slowpoke induction in Drosophila.

BACKGROUND The large-conductance calcium-activated potassium channel encoded by the slowpoke gene has recently been implicated in the ethanol response. Caenorhabditis elegans carrying mutations in this gene have altered ethanol sensitivity and Drosophila mutant for this gene are unable to acquire rapid tolerance to ethanol or anesthetics. In Drosophila, induction of slowpoke expression has been...

متن کامل

Drosophila homer is required in a small set of neurons including the ellipsoid body for normal ethanol sensitivity and tolerance.

The molecular mechanisms occurring in the nervous system that underlie behavioral responses to ethanol remain poorly understood. Here, we report that molecular requirements for two of these responses, initial sensitivity and the development of rapid tolerance, comap to the same small set of neurons. We show that null homer mutant flies exhibit both increased sensitivity to the sedative effects ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Alcoholism, clinical and experimental research

دوره 34 2  شماره 

صفحات  -

تاریخ انتشار 2010